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It is shown that viscous Poiseuille flow sustains wave propagation in its centre region 
for waves whose phase speed is less than the maximum flow speed. When, moreover, 
there are critical levels, there exists a range of phase speeds for which over-reflection 
occurs and this range corresponds exactly to the range for which unstable eigenmodes 
exist. Consistent with the conjecture of Lindzen t Barker (1985), it  is found that 
viscous boundary layers around the critical level and at the wall replace the 
exponential regions and wave sinks required for inviscid over-reflection. 

Over-reflection, we find is confined to phase speeds for which these two boundary 
layers are in close proximity rather than widely separated or substantially 
overlapping. 

Over-reflection is inevitably associated with a wave phase tilt opposite in direction 
to the shear at  the critical level. All other cases yield a phaae tilt in the direction 
of the shear. The former is consistent with the condition for the Orr mechanism to 
produce amplification (Boyd 1983). 

1. Introduction 
In a recent analysis of wave over-reflection in plane parallel shear flow, Lindzen 

& Barker (1985; hereafter referred to as LB) determined what exactly was necessary 
in order to obtain such over-reflection. The question is an important one, since the 
existence of wave over-reflection (the reflection of waves where the reflection 
coefficient exceeds unity) is necessary in order to obtain normal mode instability in 
plane parallel shear flow (and in related problems with modest deviations from the 
plane-parallel constraint). Moreover, wave over-reflection is a more general property 
than is normal mode instability since only over-reflected waves satisfying very 
special quantization conditions become unstable normal modes, whereas over- 
reflection already indicates the ability of disturbances to extract energy from the basic 
state. Finally, LB suggested that over-reflection provided a unified approach to both 
viscous and inviscid stability problems - at least in those problems where away from 
boundaries and critical layers (where the real part of the disturbance phase speed 
equals the basic state flow speed), the inviscid equations are approximately applicable 
(i.e. at high Reynolds numbers). The purpose of this paper is to test this suggestion. 
Historically, viscous and inviscid instability have tended to be treated as different 
phenomena since it has long been known that viscous instability can exist for basic 
states which do not satisfy necessary conditions for inviscid instability. For unstratified 
shear flow, the classic example is Poiseuille flow which does not satisfy Rayleigh’s 
Inflection Point Condition, but which is none the less unstable when viscosity is 
included. 

t Permanent address: Department of Physics, University of Bologna, Italy. 
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Since LB is a very recent paper, it may prove helpful to review briefly those results 
in LB which are germane to the present study. First, it is important to explain what 
we mean by wave propagation. The equations for inviscid perturbations on basic shear 
flow can always be written in the form of a second-order Helmholtz equation with 
a clearly identifiable index of refraction for wave perturbations. Wave propagation 
requires that this index be positive and slowly varying (in a WKB sense). The 
existence of some such region in the flow is obviously essential for the existence of 
wave over-reflection. It is interesting to note, in this regard, that Couette flow does 
not have any such region (the index of refraction is always negative) and, indeed, 
Couette flow is always stable in a normal-mode sense regardless of whether viscosity 
is included or not. Poiseuille flow, on the other hand, does allow wave propagation. 

Next, LB note that only waves having a critical level can be over-reflected. The 
critical level is the locus of energetic interaction between the wave and the mean flow. 
LB suggest that amplification at the critical level is by the Orr mechanism (Orr 1907 ; 
see Boyd 1983 for a particularly lucid explanation of this mechanism) which requires 
that at  the critical level, the wave has a phase tilt which is opposite to that of the 
shear. 

The simple existence of a critical level does not, by itself, lead to over-reflection. 
Usually the inviscid perturbation equation is singular at the critical level, and, if the 
critical level is in the propagation region, the wave’s group velocity normal to the 
flow goes to zero at the critical level, suppressing the interaction. The point is that 
the travel time for a wave to reach the critical level goes to infinity. This can be 
overcome by interposing a turning point (where the index of refraction turns 
negative) between the wave region and the critical level. This allows the possibility 
of waves ‘ communicating ’ with the critical level at a fmite rate since the group travel 
time remains finite up to the turning point, and tunnelling of wave flux in the 
‘exponential’ region also proceeds at  a finite rate. 

LB finally note that such tunnelling of the wave flux will not occur unless there 
is a sink for the wave flux on the side of the critical level opposite the wave region. 
In an inviscid problem, this sink must be a second-wave propagation region (see 
Lindzen & Tung 1978, who show that the Rayleigh and Fjortoft conditions are 
equivalent to setting up the above configuration of propagation, tunnelling, and sink 
regions). However, LB have shown that for purposes of producing over-reflection, 
a region of concentrated wave damping (Rayleigh friction was used in LB) serves 
equally well as a sink. LB described the role of the sink as pulling the wave flux past 
the critical level. An equivalent, but more explicit, description is given in $4 of the 
present paper where we show that only when the sink is present does the phase of 
the wave at the critical level tilt in the direction required by the Orr mechanism. This 
phase tilt disappears in the absence of the sink or even when the sink is ‘too’ far from 
the critical level. 

It was suggested in LB that the above situation was equally appropriate to a 
viscous fluid. The existence of a wave is still essential (hence, the stability of Couette 
flow and the instability of Poiseuille flow). However, the exponential region separating 
the wave region from the critical level and the second wave (sink) region on the 
opposite side the the critical level to the first (over-reflecting) wave region (both 
features being guaranteed by the Rayleigh and Fjortoft conditions) are no longer 
necessary. The role of the exponential region, i t  was suggested, could be played by 
the viscous boundary layer around the critical level. Similarly, it  was suggested that 
the role of the wave flux sink could be played by the viscous boundary layer at  a 
physical wall. Specific reference was made in LB to Poiseuille flow (a parabolic flow 
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in a bounded channel). As we have already mentioned, this flow is stable in the 
absence of viscosity (it lacks an inflection point), but is unstable when viscosity is 
included (Heisenberg 1924; Lin 1944). The main purpose of the present paper is to 
confirm the above suggestions. In doing so, we will be able to offer some simple 
insights into existing stability results. 

In $2 we rederive the Orr-Sommerfeld equation for linear wave perturbations on 
Poiseuille flow primarily in order to establish our notation. We examine the wave 
character of solutions in the centre of the flow, evaluate the wave-group velocity, 
analyse the boundary layers at the critical level and a t  the boundary walls and obtain 
asymptotic expressions for the wave modes and viscous modes near the centre of the 
flow. We finally set up the mathematical problem of calculating the reflection 
coefficient for a wave sent from the centre of the flow toward a wall. 

Section 3 describes our numerical algorithm for solving the above scattering 
problem. Resolution is discussed in the context of the above boundary-layer 
analysis. The algorithm is tested by using it to reproduce existing stability results 
for viscous Poiseuille flow (Grosch & Salwen 1968). 

In $4 we discuss our results for wave over-reflection. We find that over-reflection 
(and instability) occurs only for a narrow range of critical levels where the critical-level 
boundary layer is in close proximity to the wall boundary layer or where the two 
boundary layers are slightly overlapping. The upper neutral stability curve of the 
classical Orr-Sommerfeld problem turns out to be associated with the former while 
the lower curve is associated with the latter (see Lin 1955, p. 38 for a description of 
the two branches; the present paper to the best of our knowledge, gives the first 
explanation of their existence). Both neutral curves are associated with unity wave 
reflection. The detailed amplitude and phase structure of over-reflected waves is 
examined and discussed in the light of the mechanism proposed by LB. 

2. Governing equations and relevant properties 
In this section we discuss the properties of the solution relevant to our numerical 

integration. We consider a Poiseuille flow, vanishing at the two sidewalls at  z = 0, 
2L; the profile of the x-velocity is given by 

U(2) = v(;) [2-(;)]. 

The linearized, non-dimensional perturbation equations are 

(a,+ua,) u’+w’ = -axP’+-, 
Re Au‘ I 

(a,+ua,) w’=-azp/+- Re ’ 

a, u f + a z  wf = 0, I 
where the primes denote the non-dimensional perturbations, Re is the Reynold’s 
number (Re = VL/u) and U is equal to z(2-2). From (2.1) we eliminate the 
perturbation pressure, and we introduce a stream function $ (w’ = --a& and 
u‘ = a, yk) to get the OrrSommerfeld equation 
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Since the coefficients of (2.2) are independent o f t  and x, we look for a solution of 
the form 

(2.3) 

and we get 

$(x, z, t )  = $(z)  exp [ik(x-ct)l, 

1 (2.4) d2$ -[g+k2(U-c)-ek4 $ = 0, e-+[(U-c)-22~k~]- d4$ 
dz4 dz2 

where g = (i/kRe). In the inviscid case, (2.4) reduces to 

and, for k2(l  -c) < 2, in the centre of the channel the solution is the superposition 
of a downward- and an upward-propagating wave. In  the viscous case, for high 
Reynolds’ number, the total solution is given by the superposition of these two wave 
modes, slightly modified by the presence of dissipation, and two viscous modes. 

In  order to numerically compute the reflection coefficient for a wave sent from the 
centre of the flow toward a wall, we must be able to identify in the total solution 
the upward and the downward propagating wave mode. 

In  order to identify the different modes in the middle of the flow, we consider a 
two-scale problem which takes into account the very high Reynolds number. 
Denoting the scale of variation of the solution by 8, and substituting z = 216, we get 
(from (2.4)) 

(2.5) 
d4$ d2$ €64 - + P[B(Z) - 2€P] - + [C@) + €k4] $ = 0, 
d24 d z 2  

where 6 is a small parameter. In  the centre of the flow, B(z) = (U-c) and 
C(z) = [ - (d2U/dz2)- k2( U - c ) ]  are order-one functions. Following the WKB tech- 
nique (Bender & Orzag 1978) we write: 

where the dot stands for a derivative with respect to 2. We expand D(2) as a power 
series in of a new parameter A to be determined 

D ( 2 )  = A-1(Eo+AEl+A2E2+. . .). 

Substituting (2.7) in (2.6) we get: 

$ = A-1[z8,+Az8,+0(42)] $, 

J = A-2[$+A(2z80&+J??0)+0(A2)]  $ 
= A(3@ g1 + 3z8, E 0 )  + O(A2 

$ = A-4[z8~+A(41?~l?1+6E~J??o)+O(A2 
.... 
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keeping only the leading terms and substituting into (2.5) we find: 

E (d' [ @ + A ( 4 @ & + 6 @ # o ) ] + ( B - 2 ~ k 2 )  [ l?~+A(2~og l+#o) ]+(C+ek4)  = 0. 

Looking at the dominant terms 

and, taking into account that I E I 4 1, we have only two consistent choices for 
d : A  = 6and 1~16~ = A2.  

For d = 6, we get the balance describing the two wave modes. From the zeroth- 
and first-order equation in A,  we get 

- E0 - e(C/B + k2 )2 *'=m (2ABgO) ' 

( 2 . 8 ~ )  

(2.8b) 

or, substituting back our original variable z, 

The first term on the right-hand side of (2.9) is imaginary and describes only phase 
changes in the solution; the second term gives the wave amplitude variation due to 
the change in the index of refraction. Only the third term describes the effects of the 
dissipation, showing a small exponential growth or decay. This difference can be used 
to decide the sign of the energy flux (i.e. dissipating waves decay in the direction of 
propagation). Equation (2.9) describes the downward- and upward-propagating wave 
modes that in the next section will be noted by 4 = exp ( D - )  and F2 = exp (D , )  
respectively. 

For I E I a2 = A 2 ,  we get the balance describing the two viscous modes. From the 
zeroth order in A ,  we find 

giving four solutions for go. Two are extensions of the wave modes (@ = 0); the 
remaining two describe the viscous modes. Considering the zeroth- and first-order 
equation for the viscous modes we find: 

go = f (iB)', (2.10u) 

-5#o+~(C+2k2B) @l=m (2ABIJ0) ' 
(2.10b) 

or, substituting back our original variable z ,  

( g ) D *  ( 2 )  = +(ikRe B)'+ [In (B)]-tf(ik Re)-:(C+2k2B) (2B)-i (2.11) 

Now the first term on the right-hand side of (2.11) is complex and proportional to 
e-l and these two solutions have strong exponential growth or decay respectively. 
We call these two solutions the viscous modes, and the mode that decaysexponentially 
going from the centre of the flow toward the wall we call incident, implying that its 
source of energy must come from outside our domain. Equation (2.11) describes the 

(3 
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‘incident and reflected’ viscous modes that in the next section will be denoted by 
8 = exp (D , )  and 4 = exp ( D - )  respectively (taking it in the first quadrant). 
Equations (2.9) and (2.11) contain all the information that we need to separate the 
four modes in the centre of the channel in our numerical calculations. 

In  the remainder of this section we briefly discuss the group velocity of the wave 
modes; this will be relevant for $5.  We then discuss the thickness of the boundary 
layers present in our flow; this thickness is important because it determines the 
smallest scale that we must resolve in the numerical calculation. 

2.1. Group velocity 
We consider the inviscid form of (2.2) and we assume the scale of variation of U to  
be large compared with those of the solutions. Looking for a solution of the form 

$(z, z ,  t )  = 9 exp[i(kz+mz-ot)], 

we find the following local dispersion relation: 

2k 
(k2 + m2 ) ’ 

o = kU(z)- 

The component of the group velocity in the z-direction is then given by: 

c z = - =  4krn (i:) (k2+m2)2’ 
(2.12) 

where m2 = - k2 + 2/( U -  c ) .  We observe that Cz, vanishes as we approach the critical 
level and its asymptotic behaviour, as U goes to c ,  is given by: 

Cz, + (2): k( U -  c) t .  

Note that (Cz,)-l is not integrable as U approaches c .  

2.2. Boundary layers 
Using conventional boundary-layer analysis, i t  is easy to show that, a t  the walls, the 
following terms dominate (2.4) : * ik Re ( U - c ) - ,  d2$ 

dz4 ’ dz2 

leading to a boundary-layer scale O( Re-4 ) or more precisely, 

6, = (kc Re)-:. 

Similarly at the critical level the following terms dominate : 

d2 U 
dz4 ’ dz2 

ikRe-9, 

leading to a boundary-layer scale O(Red ) or more precisely, 

8, = I k Re 

Note, that  a t  high Reynolds number, 8, tends to be much smaller than 8,. Hence, 
if our numerical algorithm resolves the boundary layer at the wall, i t  will certainly 
be adequate to  resolve the critical layers. 
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3. The numerical algorith: resolution and checks 
Equation (2.4) has the form 

where B(z) and C(z) now include the order-a terms. In our numerical procedure we 
replace this fourth-order equation with a system of two second-order equations : 

--4 d2$ = o,\ 
dz2 

a d2$ 
-+B$+C$ dz2 = 0. 

Using the finite-difference representation of the second derivative, 
d2fldz2 N (f,+, - 2fI + fI-l ) /h2 ,  we approximate (3.2) by 

fI-l+MI f I + f r + 1  = 03 (3.3) 

where f ,  is a two-dimensional vector and MI is a two-by-two matrix: 

Equation (3.3) represents a banded tridiagonal system which we solve with the 
version of Gaussian elimination described by Lindzen & Kuo (1969). Briefly, we define 
a matrix EI and a vector g, such that 

fI = E,fI+,+g,. 

Substituting (3 .4)  into (3.3.) we find 

(3.4) 

EI =- (E I - l+MI ) - ' ,  81 = EIgI-1. ( 3 . 5 4  

To compute the solution of (3 .3 . )  we proceed in two steps. First, using (3 .5a) ,  we 
compute E, and g, (all g, vanish) starting from the wall and proceeding toward the 
centre of the flow. A t  the wall we use the boundary conditions u' = v' = 0; in the 
finite-difference approximation this gives $l = 0 and q51 = ( 2 / h 2 )  ~ , ,  which in turn 
imply 

(3.5b) 

Equation (3.5b) allows us to use ( 3 . 5 ~ )  to calculate all the E,s and g,s. To complete 
the solution (i.e. to determine thef,s using (3 .4) )  we need boundary condition at the 
centre of the flow. This will, in fact, turn out to be our scattering relation. 

In  order to obtain the 'centre' boundary condition, we formally write our solution 
in terms of the four modes discussed in 52 : 

W )  = IF'(4 + 1, &(z) + R, 4(4, (3.6) 

where I (incident) and R (reflected) denote the amplitudes of the 'inviscid' modes 
propagating energy toward and away from the wall respectively, while I ,  (incident 
viscous) and R, (reflected viscous) denote the amplitude of the two viscous modes. 
We call incident (reflected) the viscous mode whose amplitude, due to the presence 
of dissipation, decreases (increases) as we approach the wall. The functions F,, F,, 4, 
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F4 have been evaluated in $2 ((2.8) and (2.10)). We do not want any incident viscous 
mode; we want to specify the incident wave mode and we want to compute the 
reflected wave mode and the reflected viscous mode. Therefore our boundary 
condition becomes I = 1  I , = O  (3-7) 

at the centre of the flow. 

in finite-difference form as: 
To apply these boundary conditions we write the first derivative of the solution 

where the subscript IM denotes the point at the centre of the flow. Then, using (3.6) 
and (3.7) we write the solution as: 

f Z M  = SIMr+tZM (d/dz)fzM = (dSZM/dz) r+  (d/dz) fZM, 

If we are only interested in the reflected waves R, we do not need to go back to (3.4) 
and compute the solution fz, therefore we do not need to save €, and the full 
computation can be done with only a few dozen memory locations independent of 
the resolution. The full algorithm proved to be numerically stable even when using 
several thousand points. All computations presented here were done using 800 points 
from the centre of the flow to the wall; this value was chosen so that there would 
be only a small error both from the finite difference approximation and the truncation 
error introduced by the computer in single precision. We also verify that this 
resolution was sufficient to solve the boundary layer at  the wall the scale of which 
(see $2) is much smaller than that of the boundary later at the critical level. Typical 
values ( k  = 1, R = lOO00) give S, = 0.01 and S, = 0.08. 

In order to check our numerics we compute the eigenvalue and the eigenfunction 
of the first even unstable eigenmode of the A family at k = 1 and R = 1OOOO. We 
then compare our results with the results of Thomas (1953) (as referred to in Grosch 
& Salwen 1968). We find full agreement with his value of c = 0.2375+0.0037i (an 
eigenmode of the Poiseuille can be found with our technique, looking, in the complex 
plane, for the value of c such that the amplitude and the phase of the reflected wave 
coincides with those of the incident wave). 

4. Results for wave over-reflection 
Since the results we present are primarily illustrative, we will confine ourselves to 

a single Reynolds’ number Re = 1OOOO. As we see from figure 1, there are unstable 
normal modes for 0.8 < k < 1.13 with the real part of the phase speed, c,, ranging 
from 0.21 (lower neutral branch) to 0.25 (upper neutral branch). Note that Grosch 
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FIQURE 1.  Curves of constant amplification, Im (c) = constant (solid line). Curves of constant phase 
velocity, Real (c) = constant (dashed line). From Grosch & Salwen 1968. 
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FIQURE 2. Amplitude and phase of reflection coefficient as function of the phase speed, c, for 
k = 1 and Re = 1OOOO. 

& Salwen’s a is twice our k and their definition of Re is twice ours. Our qualitative 
results are essentially the same for any choice of Re (we explored 5000 < Re < 40000). 

In figure 2 we show the magnitude of the reflection coefficient, I R I, evaluated in 
the centre of the parabolic flow (as described in $3) as a function of c, for k = 1. We 
see that over-reflection occurs only in a narrow region around the value of c, for which 
unstable normal modes exist. In  figure 3 ( d )  we show the relative magnitudes of 
terms 1, 2 and 3 (the first, second and third terms) in (2.2) for k = 1 and c, = 0.1, 
0.237, 0.4 and 0.8 respectively. Our convention in these figures is to scale the 
dominant term at any point to 1 and show the relative magnitudes of the remaining 
two terms. For c,  = 0.8 and 0.4, we see that inviscid regimes (characterized by a 
balance between terms 1 and 2), critical layers (balance between terms 1 and 3), and 
wall boundary layers (balance between terms 2 and 3) are well separated. For 
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FIGURE 3 (a, b, c) .  For caption see facing page. 



Over-reflection in viscous Poiseuille flow 365 
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FIQURE 3. Relative amplitudes of the three terms in (2.2) for k = 1 and ( a )  c, = 0.1 ; ( b )  
(c), = 0.237; (c) c, = 0.4; (d) c, = 0.8, Re = loo00 for all cases. 

I/ 

r I 
FIGURE 4. Same aa figure 3 but (a)  for k = 0.0931 and c, = 0.2463 and ( b )  for k = 0.797 and 

c, = 0.2124. These correspond to upper and lower neutral modes. 
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I "" 

FIGURE 5. (a) Amplitude and phase of incidental plus reflected wave (i.e. total wave field) vs. z. 
(b) Convergence of Reynolds stress vs z .  (k = 1 ; c, = 0.1 ; Re = lOO00.) 

c = 0.237 (maximum over-reflection), the two layers are essentially t0uching.t For 
c = 0.1 the critical layer is embedded in the boundary layer and barely identifiable. 

Reference to figures 7 and 8 shows that when the critical layer and the boundary 
layer are well separated the critical layer absorbs incident waves almost exactly as 
it would in the absence of the wall boundary layer; for c = 0.1 (see figure 5 ) ,  the wave 
essentially only sees a slightly absorbing reflecting wall as though there were no 
critical layer. Only when the two layers are close or slightly overlapping does 
over-reflection occur. 

In figure 4 ( a ,  b )  we show the same quantities as in figure 3, but now for different 
values of k, k = 0.797 and cr = 0.2124 (lower neutral point of figure 1)  and k = 1.093 
and cr = 0.2453 (upper neutral point). These two points correspond to neutral normal 
modes where R = 1. For the lower neutral point the critical layer and the boundary 

t Note that the boundary layers in figure 3(a-d) do not necessarily have extents equal to the 
boundary-layer scales derived in $2. This is particularly true for the wall boundary layer. An 
examination of the solution in the wall boundaiy layer confirms that the fields there vary on the 
boundary-layer scale, but that the boundary layer (defined by the balance of the second and third 
terms in 2.2) extends for several boundary-layer scales. 
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Stress convergence 
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-1.5 1 L 
FIGURE 6. Same as figure 5 but for k = 1 and c, = 0.2315. 

layer are still distinguishable - but very close, and for the upper neutral point the 
two layers are slightly overlapping. 

A better understanding of what is going on is given by the upper panels of figures 
5-10 for the above values of c, and k. The figures show the amplitude and phase of 
the total solution (incident plus reflected waves). When the layers are well separated, 
we have mostly just the incident wave, and its phase tilt is in the direction of the 
shear so that the Om mechanism does not operate (or rather acts only to cause decay 
of perturbation energy). To be sure, the boundary layer produces a tilt in the direction 
appropriate to Orr magnification. However, the boundary layer is far removed from 
the critical layer and wave amplitudes at  the boundary layer are very small. However, 
when the two layers are next to each other (figures 3b, 6 ) ,  the appropriate tilt occurs 
within the critical layer allowing the Orr mechanism to operate. The situation 
disappears when the critical layer is embedded in the boundary layer (figures 3a, 5 )  ; 
presumably the Orr mechanism is swamped by damping. The lower panels of figures 
5-10 show the Reynolds stress convergence associated with the above cases. Positive 
convergence is associated with wave absorption. In figure 5 we essentially have only 
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r 1 += 
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wave absorption by the boundary layer and in figures 7 and 8 only wave absorption 
by the critical layer. However in figures 9 and 10 we have Reynolds stress divergence 
which balances convergence and in figure 6 the divergence exceeds the convergence 
leading to over-reflection. 

5. Estimates of growth rate from wave over-reflection 
As we can see from figure 2, for k = 1 and Reynolds’ number Re = 10000, we have 

over-reflection for a narrow region around c = 0.237 (the reflection coefficient R is 
1.042 at c = 0.237). In the same region the phase of the reflected wave crosses zero 
suggesting the presence of a nearby (in the complex plane) unstable eigenmode for 
which we find c = 0.2375+0.0037i. 

We would like to relate the growth rate of this eigenmode with the increase of wave 
energy due to the over-reflection and the travel time of the energy from the centre 
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FIQURE 8. Same as figure 5 but for k = 1 and c, = 0.8. 

of the flow to the critical level and back to the centre of the flow. In  particular we 
would like to verify the following expression : 

exp (gT)  = R,  (5.1) 

where CT is the growth rate, T is the travel time from one over-reflecting critical layer 
to the other (recall that there are two over-reflecting critical layers in a parabolic 
flow - one on each side of the centre) and R is the reflection coefficient. If we substitute 
the values of the previous paragraph we compute T = 11.12 (in our non-dimensional 
units). Because the energy travels with the group velocity, which expression was given 
in $2, we can compute the travel time to go from -2 to + Z  using: 

r z  
T(2) = 2 (Czg)-l dz, 

J O  

but this expression diverges as Z approaches a critical level (also the WKB analysis 
breaks down). We can compute, using (5.2), the distance travelled in a time T = 11.12 
and we find z = 0.140, a distance of 0.013 from the critical level (in this computation 
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FIGURE 9. Same as figure 5 but for k = 1.093 and c, = 0.2463. 

z, = 0.127). These results are shown in figure 11. (To compute T(z) we remove its 
singularity adding and subtracting the singular analytically integrable function G(z) 
given by : 

2-: k-1 
(d U/dz)! 

G(z)  = 

where (dU/dz) is computed at z = z,.) 
Note that for the above to be useful, one would have to be able to identify the 

above value of z a priori. Reference to figure 3 (b )  shows that z lies, not implausibly, 
about half way between z, and that value of z where the second and third terms in 
(2.2) are equal. However, this relation has not been proven; nor has it been tested 
at  length. 

6. Concluding remarks 
We have shown that wave over-reflection is as appropriate to the understanding 

of viscous shear instability as it is to the inviscid problem. The concept allows us to 
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FIQTJRE 10. Same as figure 5 but for k = 0.797 and c, = 0.2124. 
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FIQTJRE 11. Half the travel time UB. distance from centre of jet. Sea text for details. 

conveniently understand why viscous Poiseuille flow is unstable while viscous Couette 
flow is not. The point is simply, that at sufficiently high Reynolds numbers Poiseuille 
flow permits propagating vorticity waves while Couette flow does not. As with the 
inviscid stability problem, inviscid Poiseuille flow does not satisfy the necessary (and 
in the case of over-reflection, sufficient) conditions for over-reflection derived by 
Lindzen & Tung (1978). However, consistent with the conjecture of LB we find that 
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the missing components of the wave over-reflection geometry (a tunnelling region in 
front of the critical level and a wave sink in back of the critical level) can be simulated 
by viscous boundary layers. In contrast, to the inviscid problem where the wave sink 
is automatically adjacent to the critical level, the wave sink (i.e. the boundary layer 
at the wall) and the critical level are arbitrarily separable in the viscous problem. 
We find that over-reflection occurs only when the wall boundary layer and the 
critical-level boundary layer are close or slightly overlapping. This provides a 
convenient explanation of why instability exists for only a narrow range of phase 
speeds. 
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